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Whereas in Dirac quantum mechanics and relativistic quantum field theory one uses
Schwartz space distributions, the extensions of the Hilbert space that we propose uses
Hardy spaces. The in- and out-Lippmann–Schwinger kets of scattering theory are func-
tionals in two rigged Hilbert space extensions of the same Hilbert space. This hypothesis
also allows to introduce generalized vectors corresponding to unstable states, the Gamow
kets. Here the relativistic formulation of the theory of unstable states is presented. It is
shown that the relativistic Gamow vectors of the unstable states, defined by a resonance
pole of theS- matrix, are classified according to the irreducible representations of the
semigroup of the Poincar´e transformations (into the forward light cone). As an applica-
tion the problem of the mass definition of the intermediate vector bosonZ is discussed
and it is argued that only one mass definition leads to the exponential decay law, and
that is not the standard definition of the on-the-mass-shell renormalization scheme.
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1. INTRODUCTION

In nature we observe stable systems like atoms, molecules, electrons and
protons, and also unstable systems, like excited states, unstable nuclei, resonances,
etc. If we consider elementary particles then all but electrons, protons, and photons
are unstable. From the practical point of view we thus see that the description of
the unstable states is very important.

Existence of unstable states and their inclusion in quantum theory causes
problems. It is clear that unstable states cannot be present in the asymptotic ini-
tial and final states because their lifetime is finite and they should be included
only as the intermediate states in the interaction, as the propagators between the
points of creation and annihilation. One of the fundamental properties of quan-
tum mechanics is the unitarity of theS matrix. Any submatrix of theS matrix
is not unitary. Physically this means that if some states are artificially excluded
from the theory then the matrixScorresponding to the remaining set of the states
will not be unitary. We thus see that the exclusion of the unstable states from the
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asymptotic initial and final states can lead to breaking of theS matrix unitarity
which might eventually lead to the rejection of the probabilistic interpretation of
quantum mechanics. In the classical paper, Veltman (1964) considers a field the-
oretic model with two scalar particlesA andϕ with the corresponding massesM
andm(M > 2m) and the interaction term∼ Aϕ2. In such a theory the particleA is
unstable and decays into twoϕ particles. The particleA, as the unstable particle,
cannot appear in the asymptotic states. Veltman demonstrates that because of the
conditionM > 2m the perturbation series becomes divergent at any value of the
coupling constant so the theory in such a form is incapable to generate consistent
results. The solution of this difficulty is the derivation of the perturbation series
in the kinematic region where the perturbation series can be consistently derived
and then obtain the results in the physical region by the analytic continuation. This
is equivalent to the modification of the propagator for particleA. It turns out that
the theory where in the asymptotic states there appear only particleϕ and in the
intermediate states there are particlesϕ and A with the modified propagators is
unitary, renormalizable, and causal so it fulfills all the fundamental requirements.
We thus see that the unstable states can be excluded from the asymptotic states but
their propagators have to be modified and the theory remains consistent.

In practical calculations the Breit–Wigner formula is used for the propagator
for the unstable states

1
20

E − ER− i
20

(1)

whereER and0 are the energy and width of the resonance andE is the energy of
the process.

Most practical calculations for the resonances are carried out using Eq. (1) or
its relativistic generalization. Equation (1) implicitly contains a series of important
properties of resonances which can but do not have to be confirmed by experiment,
like, e.g., short-time behavior of the unstable states from the instant of production
or the long-time behavior of the decay process.

The fact that unstable states are not included as asymptotic states poses a
question if one needs to introduce the quantum mechanical state vector that corre-
sponds to the resonance. The answer to this question can only be found analyzing
the theory with the unstable states. In nature there are unstable states, like unstable
nuclei with the mean lifetime equal to thousands of years. On the other extreme
the lifetime of the hadronic resonances is of the order 10−24 s. The lifetime of
the free neutron is approximately 887 s. and it is the isospin partner of the stable
proton. Excluding from the theory the unstable states altogether would mean the
rejection of such a useful notion like the isospin. It is thus clear that the answer
to our question has been answered long ago, at the time when the isospin was
introduced. The state of the neutron has been defined in exactly the same way as
the state of the proton and the stable proton and unstable neutron were considered
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different states of the same physical system. In such a description the important
fact that the neutron decays has been completely neglected. This description in
some way was forced on by quantum mechanics in the Hilbert space with the
unitary and reversible evolution while the the time evolution of the unstable states
is irreversible. In this way we come to the very problem of the description of
the unstable states in quantum mechanics which can be stated that the consistent
description of the unstable states in theHilbert space quantum mechanicsis not
possible and we must extend or generalize the conventional quantum mechanics.
One of the possibilities is the introduction of non-hermitian Hamiltonians. In such
models the probability is not conserved and also the time evolution operator of
a free unstable system is nonunitary. This would lead to the modification of the
probabilistic interpretation of quantum mechanics.

The space of states of conventional quantum mechanics is the Hilbert space. It
is already not suffcient in the conventional quantum mechanics since the eigenstates
of the momentum operator (plane waves) do not belong to the Hilbert space. One
can avoid this difficulty through the systematic use of the normalizable wave
packets but in practical calculations one mostly uses plane waves and obtains
correct results without the computational complications of the wave packets. The
justification of the plane waves method and of the Dirac formalism was given by
Gel’fand and Vilenkin (1964) by the extension of Hilbert space to the triplet of
spaces (rigged Hilbert space)

8 ⊂ H ⊂ 8×, (2)

whereH is the conventional Hilbert space of the system,8 is the dense subspace
of the Hilbert spaceHwith stronger topology and8× is the space dual to the space
8 (the space of the antilinear functionals of the space8).2 The plane waves belong
to the space8× and as the generalized eigenstates of the momentum operator they
can be used without any mathematical inconsistencies.

The operators in the Hilbert space can be extended to the whole rigged Hilbert
space. The operators in the rigged Hilbert space have properties which are not
the same as in the Hilbert space. One of such properties is that the generalized
eigenvalues in the rigged Hilbert space of the hermitian operator in the Hilbert
space are not necessarily real.

Experimentally, the main effect of resonances is the bump at certain energy
values in the differential cross-section for a given partial wave. Theoretically, the
resonances are introduced as the poles on the unphysical sheet at a complex energy
value of theSmatrix for a given partial wave. It can be shown that this theoretical
description is compatible with all experimental signatures of a resonance. The
existence of the pole of theS matrix is an important mathematical property and
it permits a precise mathematical description of a resonance in the scattering

2 Notice that the space dual to the Hilbert space is identical to this Hilbert space (Riesz theorem).
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experiments. This analysis leads to the following conclusions for the energies in
the neighborhood of theSmatrix pole:

1. S matrix element is the sum of the resonance contributions and a slowly
varying background.

2. The vectors corresponding to the initial and final asymptotic states form
two different rigged Hilbert spaces.

3. One can define the vector in the rigged Hilbert space that corresponds to
an unstable state. This vector is derived from the Cauchy integral around
theSmatrix pole; it is called Gamow vector.

4. The two rigged Hilbert spaces of the initial and final states lead in a natural
way to a mathematical differentiation between the prepared in-state vectors
and the observed out-state vectors. The space of energy wave functions
for the in-states will be Hardy spaces of analytic functions on the lower
half plane and the space of energy wave functions for the out-states will be
Hardy spaces of analytic functions on the upper half plane of the second
sheet of theSmatrix.

As a consequence of the different Hardy space property for states and
observables one obtains the time asymmetry for the Born probabilities of
an observed out-state in a prepared in-state. This is a manifestation of
causality, some call it microphysical irreversibility.

We will discuss these properties in the remaining part of the paper. Let us
mention here that the formalism is fully relativistic, which manifests itself in the
fact that the vectors of an unstable state form the semigroup representation of the
Poincaré group transformations into the forward light cone. From the mathematical
properties of the rigged Hilbert spaces it follows that the evolution of such vectors
is allowed only for into the forward light cone in particular for time translations
only for t ≥ 0.

The vectors of the unstable states are an explicit realization of Veltman’s idea,
they lead to theexactexponential decay and they also exactly fulfill the Fermi’s
golden rule. They also lead theexactrelation between the lifetime and the resonance
widthτ = h/0. The stable states can be obtained as the limit0→ 0. One can thus
see that the formalism of the rigged Hilbert space allows to formulate the unified
theory of the stable and unstable states with physically expected properties.

2. RIGGED HILBERT SPACE

2.1. General Discussion

The eigenvectors of the momentum operator in quantum mechanics are the
solutions of the equation

p̂ψp = pψp. (3)
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In the position representation̂p = (h/ i )(∂/∂x) andψp is equal

ψp(x) = eipx. (4)

The functionψp(x) has an infinite norm, because|ψp(x)|2 = 1 and the integral∫ |ψp(x)|2 d3x is divergent. The eigenvectors of thep̂ operator do not belong to
the Hilbert spaceL2.

In practical calculations the functionψp(x) is frequently used as the eigen-
vector of the operator̂p, in spite of the fact that it does not belong to the Hilbert
space and its use always leads to the correct results. The justification of such a
procedure is given in (Antoine, 1969; Bohm, 1966, 1978a; Gel’fand and Vilenkin,
1964; Roberts, 1966). LetH be the Hilbert space of our physical system. In this
space the position operatorx̂ and momentum operator̂p are unbounded and their
eigenstates do not belong toH. To define the rigged Hilbert space one first intro-
duces the dense subspace8 ⊂ H with stronger topology defined by the countable
number of norms

8 3 ϕn −→
n→∞ϕ ≡ ‖A

p(ϕn − ϕ)‖ −→
n→∞0, p = 0, 1, 2. . . (5)

where A = H − 1/2 and H is the Hamiltonian of the system. The operatorsx̂
and p̂ are continuous in the space8. One then considers the space8× dual to8,
i.e., the space of the antilinear functionals in the space8. The triplet of the spaces
8,H, and8× fulfills the relation

8 ⊂ H ⊂ 8× (6)

and is called the rigged Hilbert space or the Gel’fand triplet.
Let us now consider the self-adjoint operatorA in the space8. Then

we define the operatorA× which is the extension of the operatorA
by

〈ϕ|A×F〉 = 〈Aϕ|F〉 for all ϕ ∈ 8(F ∈ 8×). (7)

If the operatorĀ is the closure ofA inH then we have the following triplet of the
operators

A ⊂ Ā ⊂ A× (8)

which are defined in their corresponding spaces.
Now we will introduce the following:

Definition 2.1. F∈ 8× is thegeneralized eigenvectorof the operatorA× if the
following relation holds

〈ϕ|A×F〉 = 〈Aϕ|F〉 = λ〈ϕ|F〉 for all ϕ ∈ 8 (9)
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andλ is the generalized eigenvalue. Relation (9) is also written in the following
equivalent form

A×F = λF. (10)

The notion of the generalized eigenvector allows to introduce the nuclear spectral
theorem (Gel’fand and Maurin (Gel’fand and Vilenkin, 1964; Maurin, 1968)).

Theorem 1. (Nuclear Spectral Theorem). Let8 ⊂ H ⊂ 8× be a rigged Hilbert
space and A be a self-adjoint, cyclic, operator continuous in8. Then there exists
a set of the generalized eigenvectors Fλ such that for everyϕ, ψ ∈ 8 the following
relation holds

(ϕ|ψ) =
∫
3

dλ〈ϕ|Fλ〉〈Fλ|ψ〉 (11)

where3 is the spectrum of the operator̄A. The nuclear spectral theorem states
that the set of the generalized eigenvectors forms the complete set of the vectors.
The classical example of this formalism is the Dirac formalism of bras and kets
where the generalized eigenvectors of the position and momentum operators fulfill

I =
∫

dx|x〉〈x| =
∫

dp|p〉〈P| (12)

2.2. Rigged Hilbert Spaces in the Scattering Experiment

Let us now discuss a scattering experiment. Conventionally it is divided into
three phases

1. Preparation
2. Interaction
3. Observation

The space of the prepared states and the space of the observables are considered
equal and are identified with the Hilbert space of the physical system. The absence
of the resonance states from Hilbert space means that the conventional quantum
mechanics cannot precisely answer various questions about the intermediate states
and the dynamics of the scattering process.

The plane wave scattering states fulfill the Lippmann–Schwinger equation

|E±〉 = |E〉 + 1

E − H0± i ε
V |E±〉 (13)

where|E±〉 are the eigenstates of the full HamiltonianH = H0+ V and|E〉 are
the eigenstates of the free HamiltonianH0 and the± superscript corresponds to the
in- and out-going plane waves. The states|E±〉 in conventional quantum mechanics
are poorly defined since the|E±〉 and the|E〉 are generalized vectors and do not
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belong to the Hilbert space. They are elements of the space8×. The mathematical
properties of the states|E±〉 will be obtained when we consider an element of the
Smatrix for a scattering experiment with an intermediate resonance.

Let us consider a scattering experiment with an intermediate unstable state.
The partial waveSmatrix for such a process has a resonance pole on the unphysical
energy sheet

Sj (s)= R

s− sR
+ R0+ R1(s− sR)+ · · · (14)

where sR is the position of the resonance pole

sR =
(

ER− i

2
0R

)2

(15)

and s= p2 is the Mandelstam variable representing the square of the center-of-
mass energy of the process.3

Let us consider now theS matrix element of the scattering process whereφ

andψ correspond to the prepared and detected states

(ψout|φout) = (ψout|Sφ in) = (Ä−ψout|Ä+φ in)

= (ψ−|φ+) =
∑
j , j3,n

∫
d3p̂

2Ê
ds

∑
j ′, j ′3,n′

d3p̂′

2Ê′
ds′〈ψ−|[ js]nj3p̂−〉

× 〈p̂ j3n[ js]|S|[ j ′s′]n′ j ′3p̂′〉〈+p̂′ j ′3n′[ j ′s′]|φ+〉 (16)

HereÄ± are the Møller operators and the states|[ js]nj3p̂± are the solutions of the
Lippmann–Schwinger equation and are the generalized eigenvectors of the exact
energy operatorPµPµ with the eigenvaluep2 = sand the total angular momentum
j . In Eq. (16) we have inserted twice the completeness relation following from the
nuclear spectral the-orem (11) for the scattering states. Notice that for the reasons
explained later we are using the 4-velocity eigenkets, this means thatp̂ in (16) is
given byp̂ = p/

√
s. This procedure is compatible with the Poincar´e invariance and

does not violate any principles. The Poincar´e invariance for theSmatrix contains
the energy–momentum conservation which can be expressed as

〈p̂ j3n[ js]|S|[ j ′s′]n′ j ′3p̂′〉 = 2Êδ3(p̂− p̂′)δ(s− s′)δ j , j ′δ j3, j ′3 Sj (s) (17)

whereSj (s) is the reduced matrix element.
Now using Eq. (17) we can write thej -th partial wave matrix element of

Eq. (16) in the following symbolic form

(ψout|φout) j = (ψ−|φ+) j =
∫ ∞

m2
0

ds〈−ψ |s−〉Sj (s)〈+s|φ+〉 (18)

3 In the process 1+ 2→ R→ 3+ 4s= (p3 + p4)µ(p3 + p4)µ and the threshold of the process is
m0 = m3 +m4.
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where m2
0 is the threshold of the process and where we use the abbreviation

〈+s|φ+〉 = 〈+p̂ j3n[ js]|φ+〉 and similarly for〈−s|ψ−〉 = 〈−ψ |s−〉. In Eq. (18) we
have suppressed the integration over the velocitiesp̂, which is implied.

Now we would wish to use the analyticity property that follows from the
presence of the resonance, Eq. (14). The s integration in Eq. (18) is on the physical
sheet and the pole in Eq. (14) is on the unphysical sheet. To be able to use Eq. (14)
we must modify the contour of the integration and for this reason we must know
the analyticity properties of the full integrand in Eq. (18), i.e., also of〈−ψ |s−〉
and 〈+s|φ+. Now, the minimal analyticity assumption that allows the contour
modification to the second sheet is that〈−ψ |s− and〈+s|φ+ are analytical functions
of s in the lower half plane and that they do not grow too fast for large values of s.
Mathematically it is expressed that〈−s|ψ−〉 and〈+s|φ+〉 are smooth Hardy class
functions from above and below, respectively

〈−p̂ j3[ js]|ψ−〉 ≡ 〈−s|ψ−〉 ∈ H2
+ ∩ S = 8+

〈+p̂ j3[ js]|φ+〉 ≡ 〈+s|φ+〉 ∈ H2
− ∩ S = 8−. (19)

HereH2
± denotes the space of Hardy class functions from above and below andS

is the Schwartz space.4

Equation (19) allows the contour modification shown in Fig. 1 and Eq. (18)
then reads

(ψ−|φ+) j =
∫ ∞

m2
0

ds〈−ψ |s−〉Sj (s)〈+s|φ+〉

=
∫ −∞I I

m2
0

ds〈−ψ |s−〉SII
j (s)〈+s|φ+〉

+
∮

CR

ds〈−ψ |s−〉SII
j (s)〈+s|φ+〉. (20)

The first integral in the range [m2
0,−∞II ] is known as the background integral and

it is the slowly varying, regular function of s (the integration path is far from the
resonance pole). The second integral, alongCR is around the resonance pole

(ψ−|φ+) j ,pole term=
∮

CR

ds〈−ψ |s−〉SII
j (s)〈+s|φ+〉

= −2π i R−1〈−ψ |s−R〉〈+sR|φ+〉 =
∫ ∞
∞II

ds〈−ψ |s−〉〈+s|φ+〉 R−1

s− sR
. (21)

4 Note the incompatibility of the signs of the notation for the in- and out-going states and for the Hardy
spaces, which follows the traditional notation in physics for the states and in mathematics for the
Hardy spaces.
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Fig. 1. Integration contours in Eq. (18). (a) Integration
contour before the deformation. (b) Modified contour on
the unphysical s sheet includes the integration values of
s belowm2

0 and the integration around the pole in the
position sR

Equation (21) holds for any vector|ψ−〉 ∈ 8+, i.e. we can omit this vector from
Eq. (21) and this leads to the definition of the vector for the unstable state (Gamow
vector)

|[ j sR]b−〉 = i

2π

∫ ∞
−∞

ds|[ j s]b−〉 1

s− sR
. (22)

whereb denotes the remaining quantum numbers including the velocityp̂.
We have indicated earlier that we were using the velocity eigenstates instead

of the momentum eigenstates. The reason for this, though technical, is important. In
the derivation of Eq. (20) we were modifying the integration path for the variable
s=

√
p2+m2. Going to complex s means going to complex momentump. If

one uses velocitŷp = p/m, one can choose to keep the 4-velocityp̂ real while
one goes to complex s. Such a choice is necessary because we thus avoid the use
of the Lorentz group representations in which boost will depend upon complex
parameters. These representations with complex momentum but real velocity are
called minimally complex.
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Another important point is the property that the in- and out-states form two
rigged Hilbert spaces based on the spaces of the Hardy class functions from above
and below. The distinction of these spaces was needed to obtain from the inter-
mediate state the specific properties of the Gamow vectors (Bohm, 1978b, 1981).
This assumption of two Hardy spaces will also turn out to be the source of the
irreversible evolution that will be discussed in the next section.

3. PHYSICAL PROPERTIES OF THE RELATIVISTIC GAMOW STATES

No further new assumptions than the Hardy space assumption are necessary
to establish the properties of the states (22). The most important of these are

1. The states (22) are the generalized eigenstates of the operators

PµPµ, P0 = H = H0+ V

e.g.,

PµPµ|[ j sR]b−〉 = sR|[ j sR]b−〉. (23)

2. The time evolution of the ket|[ j sR]b−〉 is allowed only fort ≥ 0 and the
following relation holds

e−H×t |[ j sR]b−rest〉 = e−i
√

sRt |[ j sR]b−rest〉, for t ≥ 0 only. (24)

The proof of Eq. (23) follows from the fact that ifψ− ∈ 8+ ⇒ PµPµψ− ∈ 8+
and

〈ψ−|(PµPµ)×[ j sR]b−〉 = 〈PµPµψ
−|[ j sR]b−〉

= i

2π

∫ +∞
∞II

ds〈PµPµψ
−|[ j s]b−〉 1

s− sR

= i

2π

∫ +∞
∞II

ds〈ψ−|(PµPµ)×[ j s]b−〉 1

s− sR

= i

2π

∫ +∞
∞II

ds〈ψ−|[ j s]b−〉s 1

s− sR

= sR〈ψ−|[ j sR]b−〉 for all ψ− ∈ 8+, (25)

which is equivalent to

(PµPµ)×|[ j sR]b− = sR|[ j sR]b−〉. (26)

The eigenvalue of H on the rest states is given by

(H )×|[ j sR]b−rest〉 =
√

sR|[ j sR]b−rest〉. (27)
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In Eq. (24) the most interesting and important property is that it holds only for
t ≥ 0. This fact is a consequence of the Hardy space assumption (19)ψ− ∈ 8+
for out-observablesψ−. If with ψ− ∈ 8+ also the transformed state exp(i Ht )ψ−

should belong to8+ and this can only hold fort ≥ 0. From (24) we see that the
time evolution of the Gamow state at rest|[ j sR]b−rest〉 is the following

e−i H×t |[ j sR]b−rest〉 = e−i ERt e−0Rt/2|[ j sR]b−rest〉 for t ≥ 0. (28)

Again this result is the consequence of the Hardy space assumption (19) which
constitutes asymmetric boundary conditions.

The transformation properties of the Gamow kets under the Lorentz transfor-
mation can also be established. IfU(3) is the operator of the Lorentz transformation
3 in the Hilbert spaceH then we have

(U(3))×|[ j sR]p̂ j−3 =
∑

j ′3

|[ j sR]3−1p̂ j ′−3 〉D j
j ′3 j3

(R(3−1, p̂)), (29)

whereR(3, p̂) = L−1(3, p̂)3L(p̂) is the Wigner rotation andD j
j ′3 j3

(R) are the
matrix elements of the irreducible representation of the rotation group with the an-
gular momentumj . The transformation law of the states|[ j sR]p̂ j−3 under the
Lorentz boosts3 = L(p̂) is the demonstration that these states form an irreducible
representation of the homogeneous Lorentz group.

As discussed earlier the space8+ is not invariant under the action of the
time translation exp(−i Ht ). It is invariant only under the semigroup of the time
translations fort ≥ 0. These results can be summarized as

Gamow kets form the semigroup representation of the
Poincaré group with spinj and complex invariant mass
square sR = (ER− i

20R)2 (30)

This means that from the theoretical point of view there exists the unified descrip-
tion of the stable states and resonances, stable states are in a certain sense the
limiting case0R→ 0.

The probabilities to find in a stateφ the observable|ψ〉〈ψ | are in quantum
theory given by the Born probabilities

Pψ (φ(t)) = Tr(|φ(t)〉〈φ(t)|ψ〉〈ψ |) = |〈ei Htψ |φ〉|2 = |〈ψ |e−i Htφ〉|2. (31)

This interpretation can be extended to the elements of8×+ like the Gamow state
|[ j sR]p̂ j−3 . The probability per unit time to register by the detector1N counts of
the decay products described by the observable|ψ−〉〈ψ−| is—as a generalization
of (31)—proportional to the absolute value square of the amplitude

〈ei Htψ−|[ j sR]p̂ = 0 j3〉
= e−i ERt e−0Rt/2〈ψ−|[ j sR]p̂ = 0 j3〉 for t ≥ only. (32)
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The conclusions from this mathematical consequence (32) are

1. The Gamow vector with Breit–Wigner resonance width0R defined by
Eq. (15) from theS-matrix pole at sR decays exponentially in time since
the counting rate1N(t)/1t is proportional to

|〈ψ−|e−i H×t |[ j sR]p̂ = 0 j3〉2 = e−0Rt |〈ψ−|[ j sR]p̂ = 0 j3〉|2. (33)

Because of the exponential time dependence in Eq. (33) the lifetimeτ of
the Gamow state is given byτ = 1/0R.

2. The time evolution of the Gamow vectors (at rest) is time asymmetric
t ≥ 0 given by the semigroupU×(t) = e−i H× t . This quantum mechanical
irreversibility on the microphysical level appears at first shocking but it
is consistent with the principle of causality and means that the Gamow
state must be prepared (att = t0 = 0) before an observable|ψ−〉〈ψ− can
be detected in it att > t0 (Bohmet al., 1997). The Hilbert space unitary
evolutionU (t) = e−i Ht ,−∞ < t < ∞ of the observable|ψ〉〈ψ | permits
their measurement fort ≤ 0. i.e., before the state was prepared, which is
in conflict with causality.

4. THE PROBLEM OF THE Z BOSON MASS

4.1. Phenomenology of Resonances

Resonances and quasistable particles are characterized by two sets of real
numbers (ER, 0), or (ER, R= 1

τ
), respectively. Lifetimeτ and its inverseR≡ 1

τ
,

the initial decay rate, are measured by fits of the counting rate of the decay products
1N/1t to the exponential law exp(−t/τ ) whereas the width0 is measured by
fits of the cross-section to the Lorentzian (Breit–Wigner) energy distribution (η

denotes the decay channel)

σBW
j (E) ∼ |aBW

j (E)|2 =
∣∣∣∣∣ rη
E − (ER− i 02

) ∣∣∣∣∣
2

∼ 1

(E − ER)2− (02 )2 , with 0≤ E < ∞. (34)

(plus usually some background termB(E)). The initial decay rateR(0)= R≡ 1/τ
and the resonance width0 are thus different quantities; the decay rate

R(t) =
∑
η

Rη(t) =
∑
η

Rη(0)e−
t
τ = Re−

t
τ (35)

is connected with the exponential time evolution and0 is connected with the
Lorentzian energy distribution (34). However, it became common practice not to
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distinguish between the rateR and the width0 and to identify h
τ
≡ R with 0

0 = h

τ
≡ R (36)

In nonrelativistic physics this relation is justified by the Wigner–Weisskopf
approximation. In the nonrelativistic theory based on the rigged Hilbert space
approach using the Hardy space assumption (19). The formula (36) can also be
proven as an exact result for the (nonrelativistic) Gamow vector (Bohm, 1999).
Here we will discuss the problem of resonances in relativistic physics where the
common opinion is quite different. Resonances are defined by the perturbation
theoretical definition using the self-energy of the propagators and are considered
as complicated objects that cannot be described as an exponentially decaying state
or as a state characterized by two numbers like (E, 0).

The j -th partial scattering amplitude in a relativistic resonance for-mation
processaj (s) is a function of invariant mass square s= (pµ1 pµ2 )2 = (Ecm

1 + Ecm
2 )2,

wherepµ1 , pµ2 are the momenta of the two incoming (or outgoing) particles. One
writes the amplitude of a resonance scattering process as

aj (s) = ares
j (s)+ Bj (s) (37)

whereBj (s) is the nonresonant (constant) background andares
j is the contribution of

the resonance for which one uses various assumptions all called relativistic Breit–
Wigner energy distributions. However, in contrast to the nonrelativistic case, where
one defines resonance energy and resonance width by one Breit–Wigner formula
(34) and has one definition of (ER, 0R) in the relativistic case one does not have
a universally agreed upon definition of the resonance amplitude and of resonance
mass and width.

4.2. Standard Model

The standard model of the elementary particles is formulated in terms of the
field theory with the gauge symmetry based on the groupSU(2)×U (1)× SU(3).
The subgroupSU(2)×U (1) of the gauge group describes the unified electro–
weak interactions and the subgroupSU(3) is responsible for strong interactions
(quantum chromodynamics). For each subgroup of the gauge group there is one
independent coupling constant so in the standard model there are three independent
coupling constants. The elementary “material” particles of spin 1/2 are quarks and
leptons and there are three generations of each. Additionally each quark appears
in three colors while leptons are colorless. This is the reason why quarks interact
strongly and leptons do not.

The interactions in the standard model are determined from the gauge invari-
ance which requires that for each generator of the gauge group there is one spin and
one boson. It means that in quantum chromodynamics there are eight electrically
neutral bosons called gluons (the groupSU(3) has eight generators) and for the
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electro–weak interactions there are four bosons: two charged and two neutral (the
groupSU(2)×U (1) has four generators). The gauge invariance requires that all
particles of the theory are massless what is in clear contradiction with the reality.
The masses of the “material” particles and of the gauge bosons can be generated
without spoling the renormalizability of the theory by the spontaneous symmetry
breaking and the Higgs mechanism (which requires additional spin 0 particles)
with the photon and gluons remaining massless. Until now all the particles with
the exception of the Higgs boson have been experimentally observed either directly
or indirectly (gluons).

Let us now focus our attention on the electro–weak vector (spin 1) bosons.
The charged vector bosons describe the weak interactions with the transfer of
the electric charge (e.g. in the decay of the neutron into the proton, electron and
antineutrinon→ p+ e+ ν̄, the initial neutron charge is 0 and the final proton
has charge 1, i.e. the neutron emits theW− boson and the protonn→ p+W−

andW− subsequently decays into an electron and neutrino,W− → e+ ν̄. Before
the unification of the weak and electromagnetic interactions it was believed that
there are no neutral current weak interactions. Only after the formulation of the
unified electro–weak theory, which requires such interactions for the theoretical
consistency, such interactions were discovered. These interactions are mediated
by the neutral massiveZ boson (“heavy photon”). In summary: the electro–weak
interactions are mediated by the four vector bosonsW+, W−, Z, andγ . The photon
γ is massless and the masses of theW± and Z bosons were predicted prior to
their discovery to be∼80 GeV and∼90 GeV (80 and 90 times heavier than the
proton), respectively. The experimental discovery of the bosonsW± and Z with
the properties exactly as predicted was a very strong confirmation of the unified
model of the electro–weak interactions.

4.3. Detailed Analysis of the Z-Boson Mass

The mass and width of theZ boson have been measured with an extraordinary
precision and the Review of Particle Properties (Hagiwaraet al., 2002) gives two
definitions of the mass and width of theZ-boson and lists two different values which
are obtained from the fit of two different formulas for the lineshape to the same
experimental data. The valueMZ is obtained from the fit to the “relativistic Breit–
Wigner with energy dependent width” of the on-shell renormalization scheme
(Bernichaet al., 1994, 1996; Hagiwaraet al., 2002; Sirlin, 1991a, b; Stuart, 1991,
1997; Willenbrock and Valencia, 1991)

aom
j (s)= −√s

√
0e(s)0 f (s)

s− M2
Z + i
√

s0Z(s)
≈ −MzBef0Z

s− M2
Z + i s

MZ
0Z

= RZ

s− M2
z + i s

MZ
0Z

, m2
0 ≤ s < ∞. (38)
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The valueM̄Z is obtained from the relativistic Breit–Wigner of theS-matrix pole

aBW
j (s)= Rz

s− sR
= Rz

s− M̄2
Z + i M̄ Z0̄Z

= Rz

s− (MR− i 0R
2

)2 , m2
0 ≤ s < ∞. (39)

Both lineshape formulas (38) and (39) reproduce the experimental data equally
well. But they lead to values of the mass parametersMZ andM̄Z which differ from
each other by about 10 times the experimental error. Fromaom

j (s) the fit gives the
values

Mz = (91.1871± 0.0021) GeV, 0Z = (2.4945± 0.0024) GeV. (40)

From aBW
j (s) one obtains the values̄MZ , 0̄Z and MR, 0R and these parameters

numerically differ from each other by

MR = MZ − 0.026 GeV= Mz− 10×1MZ , 0R = 0Z − 1.2 MeV, (41)

and

M̄ Z = MZ − 0.0341 GeV, 0̄Z = 0Z − 1.2 MeV (42)

The question thus is: what is the right definition of theZ-boson mass and width
and therefore the right numerical value of the mass of theZ-boson?

Even if one discards the on-shell definition (38) and chooses theS-matrix
definition (39) because it is gauge invariant, the complex parameters sR in Eq. (39)
can be expressed in terms of the real parameters mass and width in many different
ways leading to many arbitrary definitions of theZ-boson mass. Some of these
mentioned in the literature of which (40), (41), (42) are just a few.

Our answer to the question what is the right definition and therefore what is
the correct mass value obtained from the data is given by the Poincar´e transfor-
mations. The states of stable elementary particles have been defined since Wigner
(1939; Bargmann and Wigner, 1948) as vectors of an irreducible unitary rep-
resentation space [jm2] of the Poincar´e groupP. This should not be restricted
to interaction free, asymptotic states, but apply also to the exact states and to
Poincaré transformations generated by the (interaction-incorporating)exact gen-
erators P0 = H = H0+ V, Pi , Jµν . This means we use the relativistic Gamow
vectors (22) with relativistic energy distribution given by the relativistic Breit–
Wigner formula (39). From Eq. (32) for the time dependence of the decay rate=
counting rate we conclude that the lifetime of the Gamow state and the width of
the resonance state are related by

τ = 1

0R
, (43)
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where0R is related to theSmatrix pole position sR by

sR =
(

MR− i
0R

2

)2

(44)

andMR and0R label the irreducible representation of the Poincar´e semigroup of
the Gamow states. The Poincar´e invariance together with the relation (43) uniquely
determines the mass and width of an unstable state.

5. CONCLUSIONS

We have reviewed here the rigged Hilbert space extension of quantum me-
chanics. It should be pointed out that for the stationary states of stable objects the
rigged Hilbert space quantum mechanics reduces to the conventional results. It
means that the rigged Hilbert space quantum mechanics does not contradict in any
way the ordinary quantum mechanics. The three main advantages of the rigged
Hilbert space quantum mechanics are the following. First, as was clear from the
discussion of the Dirac bras and kets, it adds the mathematical precision and bet-
ter understanding to some sectors of the ordinary quantum mechanics. Second,
and more importantly, it extends quantum mechanics to a theory which includes
unstable states and thus gives the possibility to discuss these physical phenomena
in a mathematically precise way. Finally, it introduces with the Hardy space as-
sumption (19) a new quantum mechanical arrow of time which distinguishes the
semigroup representations of the Poincar´e transformations into the forward light
cone.
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